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PDG Architecture
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Topics Covered

• Background

• Complex database

• Why we chose the following goals after careful review of the original 
system

• Goals for upgrade

• Upgrade database incrementally

• Modernize the database, allowing full usage of tools available in Java 
and Python, and allowing Web-level applications

• The Web-level applications ensure that it is no longer the editor doing 
everything, and the process is scalable

• Have a maintainable database for years into the future

• Continue production of the book while under development, and have 
a seamless transition to the upgraded database
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History

• The Review has been 
produced for 40 years

• Originally typewritten text

• Punch cards in the 1980’s

• Oracle database: 1988-2005

• PostgreSQL: 2005-present

• The process has worked for 
all this time

• Adhered to best practices to 
get the book out

• The result has been accurate 
and dependable
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Status before Upgrade

• Original design worked for many years, but was brittle and 
required expert knowledge of the database

• Complex database with many implicit relationships

• Legacy Fortran (110,000 lines) directly accessing the database

• Partly carried over into new system; no need to replace

• Difficult to use with modern database tools

• No integrity constraints

• No primary keys

• No foreign keys

• Scalability and maintainability needed to be improved

• Assumption of single editor accessing the database: not scalable

• Documentation was incomplete

• No task-level change logging
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• 38 megabytes, 104 tables, 
679 columns

• ~600,000 rows with many 
tables having thousands of 
rows

• Multiple relationships 
between tables, but no 
constraints

• Divided into scientific and 
book production tables; book 
production tables refer to 
scientific tables

Complex Database
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Design Goals

• Goals were chosen after careful review of the initial status

• Changes have to be made incrementally; redoing completely 
not feasible

• Decades of effort have gone into a complex database and have to be 
preserved; complete redesign would have been much larger effort

• Complete change incompatible with ongoing production of the review

• Must still maintain compatibility with existing data and existing legacy 
Fortran programs

• Move to a more modern database

• Add integrity constraints, which

• Enables more modern tooling, supporting PostgreSQL multi-user 
mode in higher level applications using Java and Python

• Ensure maintainability into the future

• Have a process to continue production of the review while 
under development, and ensure a seamless transition
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Data Integrity

• Provides formal constraints to make database consistent and 
more navigable

• Primary keys declared in all tables: entity integrity

• Foreign keys declared in many tables: referential integrity
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Benefits of Referential Integrity

All references by an author can now easily be found.

All authors for a reference are also easily found.

Consistency is automatically enforced by the database.
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Tree Organization of Review
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Workflow Related Tables
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Maintainability
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Red Book Documentation
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• Transactional logging is opaque, and shows all database 
operations without context except for time

• Task level logging

• Ability to see all insertions, updates, and deletions on a per task level.

• Ability to debug mistakes at the task level

• Chuck’s talk has the details

Change Logging
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PDG Architecture
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Python API

• SQL is a very low level way to access the database, and is not 
programmatic except in a vendor-specific way

• A data block in the Review involves a number of tables and 
relationships

• Python API provides interactive API to deal with data block

• Uses the object relational mapping (ORM) tools SqlAlchemy and 
SqlSoup for accessing the database

• ORM tools are important, and Chuck’s talk will cover the details

• Demo showing the simplicity of this API in the afternoon
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Data Block
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Upgrade process
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Documenting Upgrade Process
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• A process was put in place to ensure that when the 
production system was upgraded, everything would work

• A number of changes in development database until database 
frozen; all changes had to be tested

• Nightly test procedure

• Changes in production database committed as SQL dumps under 
CVS control

• Copy of the production database created from SQL dumps, and 
upgraded database produced by applying SQL scripts

• Tested the resulting database against the Java and Python API’s

Upgrade Verification Process
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Upgrading to V0

• July 2009-May 2010:  Ongoing development of upgraded 
database and Java applications on old machine

• March 2010-May 2010:  Database development on machine 
with room for growth, using PostgreSQL 8.4

• May 2010:  Development database schema frozen, Java 
applications moved to new machine and to PostgreSQL 8.4

• July 2010:  All legacy Fortran programs worked with the 
development PostgreSQL 8.4 database

• August 2010: Production database moved to new machine, 
and upgraded to incorporate modifications introduced in 
tested development database

• V0 release
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Current Status

• Successfully moved from a legacy database to a modern 
database

• Satisfied constraint of producing the 2010 edition of the 
review while the modified database was under development

• The review produced by the legacy Fortran programs is 
identical using the old and new production database

• Database-related work for the remaining interfaces will 
incorporate the same proven design and verification 
processes that worked for V0
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• Majority of changes have been accomplished

• Additional changes will occur at planned intervals

• Minor changes still remain

• New columns in some tables

• More foreign keys

• Implementing remaining interfaces will necessitate new 
schema but minor changes to existing schema

Changes Past V0
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Conclusions

• Database now meets our needs

• Shifted constraints from the application to the database level

• Each new application no longer has to re-implement constraints

• Database itself now logs every task

• Deployment was seamless

• Well-documented, and maintainable into future

It is now our production database!!!


